#### Topics in the June 2009 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2009-J-2:

• Nuclear and Radiation Chemistry

2009-J-3:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Liquid Crystals

2009-J-4:

• Shape of Atomic Orbitals and Quantum Numbers

2009-J-5:

- Periodic Table and the Periodic Trends
- Filling Energy Levels in Atoms Larger than Hydrogen
- Bonding MO theory (polar bonds)

2009-J-6:

• Bonding - MO theory (larger molecules)

2009-J-7:

• Band Theory - MO in Solids

2009-J-8:

- Lewis Structures
- VSEPR

2009-J-9:

- Chemical Equilibrium
- Equilibrium and Thermochemistry in Industrial Processes

2009-J-10:

• Chemical Equilibrium

2009-J-11:

- Gas Laws
- Thermochemistry
- First and Second Law of Thermodynamics

2009-J-12:

- Gas Laws
- Thermochemistry

2009-J-13:

• Chemical Equilibrium

2009-J-14:

• Types of Intermolecular Forces

June 2009

2009-J-15:

• Electrochemistry

22/05(a)

# The University of Sydney

## **CHEMISTRY 1A - CHEM1101**

## CONFIDENTIAL

#### FIRST SEMESTER EXAMINATION

## **JUNE 2009**

#### **TIME ALLOWED: THREE HOURS**

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

| FAMILY<br>NAME | SID<br>NUMBER   |  |
|----------------|-----------------|--|
| OTHER<br>NAMES | TABLE<br>NUMBER |  |

#### **INSTRUCTIONS TO CANDIDATES**

- All questions are to be attempted. There are 24 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 19, 22 and 28 are for rough working only.

### **OFFICIAL USE ONLY**

| Multiple choice section |               |  |  |
|-------------------------|---------------|--|--|
| Marks                   |               |  |  |
| Max                     | Gained        |  |  |
| 34                      | $\overline{}$ |  |  |
|                         | Max<br>34     |  |  |

Short answer section

|       | Marks |        |  |        |
|-------|-------|--------|--|--------|
| Page  | Max   | Gained |  | Marker |
| 12    | 4     |        |  |        |
| 13    | 4     |        |  |        |
| 14    | 5     |        |  |        |
| 15    | 5     |        |  |        |
| 16    | 6     |        |  |        |
| 17    | 4     |        |  |        |
| 18    | 7     |        |  |        |
| 20    | 4     |        |  |        |
| 21    | 3     |        |  |        |
| 23    | 5     |        |  |        |
| 24    | 5     |        |  |        |
| 25    | 2     |        |  |        |
| 26    | 6     |        |  |        |
| 27    | 6     |        |  |        |
| Total | 66    |        |  |        |
| Check | total |        |  |        |

| • | Scholars think that a parchment scroll recently found in the Middle East could have originated from the same group responsible for the Dead Sea Scrolls. If a modern piece of parchment has an activity of $4.0 \times 10^{-4}$ Ci g <sup>-1</sup> , calculate the expected activity of the recently discovered scroll if it originated 2100 years ago. | Marks<br>2 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   |                                                                                                                                                                                                                                                                                                                                                         |            |
|   |                                                                                                                                                                                                                                                                                                                                                         |            |
|   | A nswer                                                                                                                                                                                                                                                                                                                                                 | _          |
| • | <sup>11</sup> C is an unstable isotope of carbon. Which force within the <sup>11</sup> C nucleus is responsible for its instability? Explain.                                                                                                                                                                                                           | 2          |
|   |                                                                                                                                                                                                                                                                                                                                                         | _          |
|   |                                                                                                                                                                                                                                                                                                                                                         |            |
|   | Which force is responsible for the greater stability of the $^{12}$ C isotope compared to the                                                                                                                                                                                                                                                           | _          |
|   | <sup>11</sup> C isotope? Explain.                                                                                                                                                                                                                                                                                                                       | -          |
|   |                                                                                                                                                                                                                                                                                                                                                         |            |
|   |                                                                                                                                                                                                                                                                                                                                                         |            |

| • In an electron microscope, to what minim<br>be accelerated in order to achieve a better<br>wavelength) than a visible light microscop<br>visible light of 500 nm. | num velocity must the electrons in the beam<br>spatial resolution ( <i>i.e.</i> , have a shorter<br>pe? Assume an average wavelength of | Marks<br>2 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                     |                                                                                                                                         |            |
|                                                                                                                                                                     |                                                                                                                                         |            |
|                                                                                                                                                                     |                                                                                                                                         |            |
|                                                                                                                                                                     | Answer:                                                                                                                                 | -          |
| • Sketch the arrangement of molecules in a liquid crystal.                                                                                                          | nematic phase and a smectic phase of a                                                                                                  | 2          |
| nematic phase                                                                                                                                                       | smectic phase                                                                                                                           |            |
|                                                                                                                                                                     |                                                                                                                                         |            |
|                                                                                                                                                                     |                                                                                                                                         |            |
|                                                                                                                                                                     |                                                                                                                                         |            |
|                                                                                                                                                                     |                                                                                                                                         |            |
|                                                                                                                                                                     |                                                                                                                                         |            |

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

| a 2s atomic orbital                                                                               | a 3 <i>p</i> atomic orbital                                                                               |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
|                                                                                                   |                                                                                                           |  |
|                                                                                                   |                                                                                                           |  |
|                                                                                                   |                                                                                                           |  |
|                                                                                                   |                                                                                                           |  |
|                                                                                                   |                                                                                                           |  |
| Explain the significance of (a                                                                    |                                                                                                           |  |
| wavefunction, in terms of the space relative to the nucleus.                                      | ) the lobes, (b) the nodes and (c) the sign of the probability of finding an electron at a given point in |  |
| wavefunction, in terms of the space relative to the nucleus.                                      | ) the lobes, (b) the nodes and (c) the sign of the probability of finding an electron at a given point in |  |
| explain the significance of (a wavefunction, in terms of the space relative to the nucleus.       | ) the lobes, (b) the nodes and (c) the sign of the probability of finding an electron at a given point in |  |
| explain the significance of (a wavefunction, in terms of the space relative to the nucleus.       | ) the lobes, (b) the nodes and (c) the sign of the probability of finding an electron at a given point in |  |
| explain the significance of (a<br>wavefunction, in terms of the<br>space relative to the nucleus. | ) the lobes, (b) the nodes and (c) the sign of the probability of finding an electron at a given point in |  |
| explain the significance of (a wavefunction, in terms of the space relative to the nucleus.       | ) the lobes, (b) the nodes and (c) the sign of the probability of finding an electron at a given point in |  |
| explain the significance of (a wavefunction, in terms of the space relative to the nucleus.       | ) the lobes, (b) the nodes and (c) the sign of the probability of finding an electron at a given point in |  |

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

| <i>i.e.</i> Discuss the trend                                  | erms of the in $\Delta H$ for t | eir electron<br>he followir | ic configur  | ations.<br>A(g) | $+ e^{-} \rightarrow A$ | A-(g) | J |
|----------------------------------------------------------------|---------------------------------|-----------------------------|--------------|-----------------|-------------------------|-------|---|
| Element                                                        | Li                              | Be                          | В            | С               | N                       |       |   |
| $\Delta H$ (in kJ mol <sup>-1</sup> )                          | -60                             | +241                        | -27          | -122            | +8                      |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
|                                                                |                                 |                             |              |                 |                         |       |   |
| • Briefly explain the fo                                       | llowing co                      | ncepts and                  | their electr | onic origin     | S.                      |       | 2 |
| • Briefly explain the for<br>a) paramagnetism                  | llowing co                      | ncepts and                  | their electr | onic origin     | S.                      |       | 2 |
| • Briefly explain the for<br>a) paramagnetism                  | llowing co                      | ncepts and                  | their electr | onic origin     | S.                      |       | 2 |
| • Briefly explain the for<br>a) paramagnetism                  | llowing co                      | ncepts and                  | their electr | onic origin     | s.                      |       | 2 |
| • Briefly explain the for<br>a) paramagnetism                  | llowing co                      | ncepts and                  | their electr | onic origin     | S.                      |       | 2 |
| • Briefly explain the fo<br>a) paramagnetism<br>b) polar bond  | llowing co                      | ncepts and                  | their electr | onic origin     | s.                      |       | 2 |
| • Briefly explain the fol<br>a) paramagnetism<br>b) polar bond | llowing co                      | ncepts and                  | their electr | onic origin     | S.                      |       | 2 |
| • Briefly explain the fo<br>a) paramagnetism<br>b) polar bond  | llowing co                      | ncepts and                  | their electr | onic origin     | S.                      |       | 2 |

The following diagram shows the energy level diagram for the molecular orbitals in the HF molecule (centre), in comparison to the atomic energy levels of hydrogen (left) and fluorine (right).

1s
2p
2s
Energy
Energy
Is

Add the ground state electron configuration to the diagrams for all three species using the arrow notation for electron spin.

F

Label the orbitals of HF according to whether they are bonding, non-bonding, or antibonding.

Sketch the  $\sigma$ -bonding orbital showing the position of the atomic nuclei.

HF

Н

| • Explain what is meant by the term "band gap".                                                                                               | Marks<br>4 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
| The band gap of the semiconductor gallium(II) sulfide is 2.53 eV. What range of wavelengths (in nm) would you expect this material to absorb? |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
| For reference, the relationship between colours and wavelengths is as follows:                                                                |            |
| violet blue green yellow orange red                                                                                                           |            |
| 400 450 490 560 590 630 700 nm                                                                                                                |            |
| illuminated with white light. Explain your answer.                                                                                            |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |
|                                                                                                                                               |            |

| • Draw the m                 | ajor resonanc                     | e contributors of                 | of nitryl chloride, ClNO                             | 2.                      | Marks<br>2 |
|------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------------|-------------------------|------------|
|                              |                                   |                                   |                                                      |                         | -          |
| What is the                  | bond order of                     | f the N–O bond                    | ls?                                                  |                         |            |
| • Complete the structure and | the following t<br>d the predicte | able showing the d shape of each  | ne number of valence el<br>n of the following specie | ectrons, a Lewis<br>es. | 5          |
| Molecule<br>name             | Chemical formula                  | Number of<br>valence<br>electrons | Lewis structure                                      | Geometry of species     |            |
| e.g. water                   | H <sub>2</sub> O                  | 8                                 | H, H                                                 | bent                    |            |
| carbonate ion                |                                   |                                   |                                                      |                         |            |
| chlorine<br>trifluoride      |                                   |                                   |                                                      |                         |            |



Marks • Solid NH<sub>4</sub>HS in placed in an evacuated container at 25 °C and the following 3 equilibrium is established.  $NH_4HS(s) \iff NH_3(g) + H_2S(g)$  $\Delta H^{\circ} = +93 \text{ kJ mol}^{-1}$ At equilibrium, some solid NH<sub>4</sub>HS remains in the container. Predict and explain each of the following. (a) The effect on the equilibrium partial pressure of NH<sub>3</sub> gas when additional solid NH<sub>4</sub>HS is introduced into the container. (b) The effect on the amount of solid NH<sub>4</sub>HS present when the volume of the container is decreased. (c) The effect on the amount of solid NH<sub>4</sub>HS present when the temperature is increased.

| • A gaseous hydrocarbon is found to contain 85.6 % carbon and 17.4 % hydrogen by mass. A 10.0 L sample of this gas has a mass of 23.78 g at 1.00 atm and 298 K. Show that the hydrocarbon is butane, $C_4H_{10}$ . | Marks<br>5 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
| Using the data below, calculate the heat generated when this quantity of butane is burnt in air.                                                                                                                   |            |
| $\Delta_{\rm f} H^{\circ}$ : C <sub>4</sub> H <sub>10</sub> (g) –126 kJ mol <sup>-1</sup> , CO <sub>2</sub> (g) –394 kJ mol <sup>-1</sup> , H <sub>2</sub> O(l) = –286 kJ mol <sup>-1</sup>                        | _          |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |
| Answer:                                                                                                                                                                                                            | -          |

| • | A radiator generates 150 J to heat up air inside a sealed container with volume of 2.00 L and initially at 25 °C and atmospheric pressure. What will be the pressure inside the container after heating?<br>Assume that air is composed of 80 % nitrogen and 20 % oxygen by volume.<br>Specific heat capacities: N <sub>2</sub> 29.14 J K <sup>-1</sup> mol <sup>-1</sup> and O <sub>2</sub> 29.38 J K <sup>-1</sup> mol <sup>-1</sup> | Marks<br>5 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|   | Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                              | _          |
|   | If this heated air is injected into a balloon, it will rise. Use the ideal gas equation to explain why this happens.                                                                                                                                                                                                                                                                                                                   | _          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |

| • Fe <sub>2</sub> O <sub>3</sub> can be reduced by carbon monox                   | kide according to the                     | he following equation.        | Marks 2 |
|-----------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|---------|
| $Fe_2O_3(s) + 3CO(g) \iff 2Fe(s)$                                                 | ) + $3CO_2(g)$                            | $K_{\rm p}$ =19.9 at 1000 K   |         |
| At 1000 K, what are the equilibrium pa initially present is CO at a partial press | rtial pressures of C<br>ure of 0.978 atm? | CO and $CO_2$ if the only gas |         |
|                                                                                   |                                           |                               |         |
|                                                                                   |                                           |                               |         |
|                                                                                   |                                           |                               |         |
|                                                                                   |                                           |                               |         |
|                                                                                   |                                           |                               |         |
|                                                                                   |                                           |                               |         |
|                                                                                   |                                           |                               |         |
|                                                                                   |                                           |                               |         |
|                                                                                   |                                           |                               |         |
|                                                                                   | 1                                         |                               |         |
| <i>p</i> (CO) =                                                                   | $p(CO_2) =$                               |                               |         |

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

| • Explain the trend forces.                                       | in the following table in te                                       | rms of the type and size of intermolecu | lar Marks 6 |  |  |  |  |  |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|-------------|--|--|--|--|--|--|
|                                                                   | Substance                                                          | Boiling point (°C)                      |             |  |  |  |  |  |  |
|                                                                   | CH <sub>3</sub> CH <sub>3</sub>                                    | -89                                     |             |  |  |  |  |  |  |
|                                                                   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | -1                                      |             |  |  |  |  |  |  |
|                                                                   | CH <sub>3</sub> CH <sub>2</sub> –O–CH <sub>2</sub> CH <sub>3</sub> | 35                                      |             |  |  |  |  |  |  |
|                                                                   | CH <sub>3</sub> CH <sub>2</sub> OH                                 | 78                                      |             |  |  |  |  |  |  |
|                                                                   | H <sub>2</sub> O                                                   | 100                                     |             |  |  |  |  |  |  |
| There are two iso                                                 | mers with the molecular fo                                         | rmula C.H.o                             |             |  |  |  |  |  |  |
| I here are two iso                                                | mers with the molecular fo                                         | rmula $C_4H_{10}$ .                     |             |  |  |  |  |  |  |
| $CH_3-CH_2-CH_2-CH_3$ $H_3C$ $CH_3$ $H_3C$ $CH_3$                 |                                                                    |                                         |             |  |  |  |  |  |  |
| butane 2-methylpropane                                            |                                                                    |                                         |             |  |  |  |  |  |  |
| Discuss which isomer will have the greater intermolecular forces. |                                                                    |                                         |             |  |  |  |  |  |  |
|                                                                   |                                                                    |                                         |             |  |  |  |  |  |  |

| • | • Consider the galvanic cell $Zn(s)   Zn^{2+}(aq)     Ag^{+}(aq)   Ag(s)$ with initial concentrations of $[Zn^{2+}] = 1.00$ M and $[Ag^{+}] = 0.50$ M. Draw the cell and clearly label which electrode is the anode and which electrode is the cathode. |   |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         | _ |  |  |  |  |  |
|   | Write the equation for the reaction.                                                                                                                                                                                                                    | _ |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   | Calculate the cell potential at 298 K.                                                                                                                                                                                                                  |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   | Answer:                                                                                                                                                                                                                                                 |   |  |  |  |  |  |
|   | Is this a spontaneous voltaic cell? Give a reason for your answer.                                                                                                                                                                                      |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                         |   |  |  |  |  |  |

#### **CHEM1101 - CHEMISTRY 1A**

#### **DATA SHEET**

 $Physical \ constants$ Avogadro constant,  $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant,  $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant,  $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum,  $c = 2.998 \times 10^8 \ {\rm m \ s}^{-1}$ Rydberg constant,  $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant,  $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J \ K}^{-1}$ Permittivity of a vacuum,  $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant,  $R = 8.314 \ {\rm J \ K}^{-1} \ {\rm mol}^{-1}$   $= 0.08206 \ {\rm L} \ {\rm atm \ K}^{-1} \ {\rm mol}^{-1}$ Charge of electron,  $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of proton,  $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron,  $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$ 

#### Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm<sup>-3</sup>

| Conversion factors                               |                                                 |
|--------------------------------------------------|-------------------------------------------------|
| 1 atm = 760 mmHg = 101.3 kPa                     | $1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$ |
| $0 ^{\circ}\text{C} = 273 \text{K}$              | $1 \text{ Hz} = 1 \text{ s}^{-1}$               |
| $1 L = 10^{-3} m^3$                              | 1 tonne = $10^3$ kg                             |
| $1 \text{ Å} = 10^{-10} \text{ m}$               | $1 \text{ W} = 1 \text{ J s}^{-1}$              |
| $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ |                                                 |

| Deci       | mal fract | ions   | Decimal multiples |        |        |  |  |  |
|------------|-----------|--------|-------------------|--------|--------|--|--|--|
| Fraction   | Prefix    | Symbol | Multiple          | Prefix | Symbol |  |  |  |
| $10^{-3}$  | milli     | m      | 10 <sup>3</sup>   | kilo   | k      |  |  |  |
| $10^{-6}$  | micro     | μ      | $10^{6}$          | mega   | Μ      |  |  |  |
| $10^{-9}$  | nano      | n      | $10^{9}$          | giga   | G      |  |  |  |
| $10^{-12}$ | pico      | р      |                   |        |        |  |  |  |

## CHEM1101 - CHEMISTRY 1A

| Standard Reduction Potentials, E°                                                                                        |                   |
|--------------------------------------------------------------------------------------------------------------------------|-------------------|
| Reaction                                                                                                                 | $E^{\circ}$ / V   |
| $\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$                | +1.82             |
| $Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$                                                                              | +1.72             |
| $MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$                                                    | +1.51             |
| $\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$                                    | +1.50             |
| $Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$                                                                                      | +1.36             |
| $O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$                                                                                | +1.23             |
| $Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$                                                                                 | +1.18             |
| $MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$                                                                  | +0.96             |
| $NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$                                                               | +0.96             |
| $Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$                                                                                 | +0.92             |
| $Ag^+(aq) + e^- \rightarrow Ag(s)$                                                                                       | +0.80             |
| $\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$ | +0.77             |
| $Cu^+(aq) + e^- \rightarrow Cu(s)$                                                                                       | +0.53             |
| $\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$                                    | +0.34             |
| $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$               | +0.15             |
| $2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$                                  | 0 (by definition) |
| $Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$                                                                                   | -0.04             |
| $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$                                                                                 | -0.13             |
| $\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$                                    | -0.14             |
| $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$                                                                                 | -0.24             |
| $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$                                                                                 | -0.40             |
| $\operatorname{Fe}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Fe}(s)$                                     | -0.44             |
| $\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$                                    | -0.74             |
| $\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$                                    | -0.76             |
| $2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$                                                                            | -0.83             |
| $\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$                                    | -0.89             |
| $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$                                                                                 | -1.68             |
| $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$                                                                                 | -2.36             |
| $Na^+(aq) + e^- \rightarrow Na(s)$                                                                                       | -2.71             |
| $Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$                                                                                 | -2.87             |
| $Li^+(aq) + e^- \rightarrow Li(s)$                                                                                       | -3.04             |

## CHEM1101 - CHEMISTRY 1A

# Useful formulas

| Quantum Chemistry                                                            | Electrochemistry                                                                             |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $E = hv = hc/\lambda$                                                        | $\Delta G^{\circ} = -nFE^{\circ}$                                                            |
| $\lambda = h/mv$                                                             | Moles of $e^- = It/F$                                                                        |
| $E = -Z^2 E_{\rm R}(1/n^2)$                                                  | $E = E^{\circ} - (RT/nF) \times 2.303 \log Q$                                                |
| $\Delta x \cdot \Delta(mv) \ge h/4\pi$                                       | $= E^{\circ} - (RT/nF) \times \ln Q$                                                         |
| $q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$                         | $E^{\circ} = (RT/nF) \times 2.303 \log K$                                                    |
| $T \lambda = 2.898 \times 10^6 \text{ K nm}$                                 | $= (RT/nF) \times \ln K$                                                                     |
|                                                                              | $E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$                                 |
| Acids and Bases                                                              | Gas Laws                                                                                     |
| $pK_{\rm w} = pH + pOH = 14.00$                                              | PV = nRT                                                                                     |
| $pK_w = pK_a + pK_b = 14.00$                                                 | $(P + n^2 a/V^2)(V - nb) = nRT$                                                              |
| $pH = pK_a + \log\{[A^-] / [HA]\}$                                           |                                                                                              |
| Radioactivity                                                                | Kinetics                                                                                     |
| $t_{1/2} = \ln 2/\lambda$                                                    | $t_{\frac{1}{2}} = \ln 2/k$                                                                  |
| $A = \lambda N$                                                              | $k = A e^{-Ea/RT}$                                                                           |
| $\ln(N_0/N_t) = \lambda t$                                                   | $\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$                                             |
| $^{14}$ C age = 8033 ln( $A_0/A_t$ ) years                                   | $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left( \frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ |
| Colligative properties                                                       | Thermodynamics & Equilibrium                                                                 |
| $\Pi = cRT$                                                                  | $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$                                   |
| $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ | $\Delta G = \Delta G^{\circ} + RT \ln Q$                                                     |
| $\mathbf{c} = k\mathbf{p}$                                                   | $\Delta G^{\circ} = -RT \ln K$                                                               |
| $\Delta T_{\rm f} = K_{\rm f} m$                                             | $\Delta_{\rm univ}S^\circ = R\ln K$                                                          |
| $\Delta T_{\rm b} = K_{\rm b} m$                                             | $K_{\rm p} = K_{\rm c} \left( RT \right)^{\Delta n}$                                         |
| Miscellaneous                                                                | Mathematics                                                                                  |
| $A = -\log \frac{I}{I_0}$                                                    | If $ax^2 + bx + c = 0$ , then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                       |
| $A = \varepsilon c l$                                                        | $\ln x = 2.303 \log x$                                                                       |
| $F = -A \frac{e^2}{N}$                                                       | Area of circle = $\pi r^2$                                                                   |
| $2 4\pi\varepsilon_0 r^{TA}$                                                 | Surface area of sphere = $4\pi r^2$                                                          |

| 1                    | 2                 | 3              | 4                  | 5                  | 6              | 7                    | 8                  | 9               | 10                    | 11           | 12           | 13                | 14                | 15             | 16                 | 17                  | 18                   |
|----------------------|-------------------|----------------|--------------------|--------------------|----------------|----------------------|--------------------|-----------------|-----------------------|--------------|--------------|-------------------|-------------------|----------------|--------------------|---------------------|----------------------|
| 1                    |                   |                |                    |                    |                |                      |                    |                 |                       |              |              |                   |                   |                |                    | ſ                   | 2                    |
| HYDROGEN             |                   |                |                    |                    |                |                      |                    |                 |                       |              |              |                   |                   |                |                    |                     | HELIUM               |
| 1.008                |                   |                |                    |                    |                |                      |                    |                 |                       |              |              |                   |                   |                |                    |                     | 4.003                |
| 3                    | 4                 | ]              |                    |                    |                |                      |                    |                 |                       |              |              | 5                 | 6                 | 7              | 8                  | 9                   | 10                   |
|                      | BERYLLIUM         |                |                    |                    |                |                      |                    |                 |                       |              |              | BORON             | CARBON            | NITROGEN       | OXYGEN             | FLUORINE            | NEON                 |
| <b>LI</b><br>6 9/1   | ве<br>9.012       |                |                    |                    |                |                      |                    |                 |                       |              |              | <b>D</b>          | 12 01             | 14 01          | 16.00              | <b>F</b><br>19.00   | 1 <b>NE</b><br>20.18 |
| 11                   | 12                |                |                    |                    |                |                      |                    |                 |                       |              |              | 13                | 12.01             | 14.01          | 16                 | 17.00               | 18                   |
| SODIUM               | A 22<br>MAGNESIUM |                |                    |                    |                |                      |                    |                 |                       |              |              | ALUMINIUM         | SILICON           | PHOSPHORUS     | SULFUR             | CHLORINE            | ARGON                |
| Na                   | Mg                |                |                    |                    |                |                      |                    |                 |                       |              |              | Al                | Si                | P              | S                  | Cl                  | Ar                   |
| 22.99                | 24.31             | 0.1            |                    | 00                 | 24             | 25                   | 26                 | 27              | 20                    | 20           | 20           | 26.98             | 28.09             | 30.97          | 32.07              | 35.45               | 39.95                |
| 19<br>potassium      | 20<br>calcium     | 21<br>scandium | 22<br>titanium     | 23<br>VANADIUM     | 24<br>CHROMIUM | 25<br>manganese      | 26<br>IRON         | Z /<br>cobalt   | 28<br>NICKEL          | 29<br>COPPER | 30<br>ZINC   | 31<br>GALLIUM     | 32<br>germanium   | 33<br>ARSENIC  | 34<br>selenium     | 35<br>BROMINE       | 30<br>KRYPTON        |
| K                    | Ca                | Sc             | Ti                 | V                  | Cr             | Mn                   | Fe                 | Со              | Ni                    | Cu           | Zn           | Ga                | Ge                | As             | Se                 | Br                  | Kr                   |
| 39.10                | 40.08             | 44.96          | 47.88              | 50.94              | 52.00          | 54.94                | 55.85              | 58.93           | 58.69                 | 63.55        | 65.39        | 69.72             | 72.59             | 74.92          | 78.96              | 79.90               | 83.80                |
| 37                   | 38                | 39             | 40                 | 41                 | 42             | 43                   | 44                 | 45              | 46                    | 47           | 48           | 49                | 50                | 51             | 52                 | 53                  | 54                   |
| Rb                   | Sronnom           | YIIRIOM        | Zr                 | Nobiom             | MOLYBDENUM     | Тс                   | RU                 | Rh              | PALLADIOM             |              | Cd           | India             | Sn                | Sb             | Те                 | I                   | Xe                   |
| 85.47                | 87.62             | 88.91          | 91.22              | 92.91              | 95.94          | [98.91]              | 101.07             | 102.91          | 106.4                 | 107.87       | 112.4        | 0 114.82          | 118.69            | 121.75         | 127.60             | 126.90              | 131.30               |
| 55                   | 56                | 57-71          | 72                 | 73                 | 74             | 75                   | 76                 | 77              | 78                    | 79           | 80           | 81                | 82                | 83             | 84                 | 85                  | 86                   |
| CAESIUM              | BARIUM<br>Rg      |                | HAFNIUM<br>HF      | TANTALUM<br>T9     | TUNGSTEN       | RHENIUM              |                    | IRIDIUM<br>Tr   | PLATINUM<br><b>Pt</b> |              | MERCUR<br>Ho | THALLIUM          | LEAD<br>Ph        | візмитн        | POLONIUM           | ASTATINE <b>A t</b> |                      |
| 132.91               | 137.34            |                | 178.49             | 180.95             | 183.85         | 186.2                | 190.2              | 192.22          | 195.09                | 196.97       | 200.5        | 9 204.37          | 207.2             | 208.98         | [210.0]            | [210.0]             | [222.0]              |
| 87                   | 88                | 89-103         | 104                | 105                | 106            | 107                  | 108                | 109             | 110                   | 111          |              |                   |                   |                |                    |                     |                      |
| FRANCIUM             | RADIUM            |                | RUTHERFORDIU       |                    | SEABORGIUM     | BOHRIUM              | HASSIUM            | MEITNERIUM      | DARMSTADTIUM          | ROENTGENIUM  |              |                   |                   |                |                    |                     |                      |
| <b>FF</b><br>[223.0] | <b>Ka</b>         |                | <b>KI</b><br>[261] | <b>DD</b>          | <b>58</b>      | <b>BN</b><br>[262]   | <b>HS</b><br>[265] | IVIL<br>[266]   | DS                    | <b>Kg</b>    |              |                   |                   |                |                    |                     |                      |
| [225.0]              | [220.0]           |                | [201]              | [202]              | [200]          | [202]                | [205]              | [200]           | [271]                 |              |              |                   |                   |                |                    |                     |                      |
|                      | 5                 | 7              | 58                 | 50                 | 60             | 61                   | 62                 | 63              | 6/                    | 1 6          | 55           | 66                | 67                | 68             | 60                 | 70                  | 71                   |
| LANTHANOI            | DS LANTE          | /<br>IANUM (   | CERIUM P           | RASEODYMIUM        | NEODYMIUM      | PROMETHIUM           | SAMARIUM           | EUROPIUM        | 1 GADOLI              | T NIUM TE    | RBIUM        | DVSPROSIUM        | HOLMIUM           | ERBIUM         | THULIUM            | 7 U<br>YTTERBIUM    | / 1<br>LUTETIUM      |
|                      | L                 | a              | Ce                 | Pr                 | Nd             | Pm                   | Sm                 | Eu              | G                     | dl 7         | Гb           | Dy                | Но                | Er             | Tm                 | Yb                  | Lu                   |
|                      | 138               | 0              | 40.12              | 140.91             | 144.24         | [144.9]              | 150.4              | 151.96          | <u>5 157.</u>         | 25 15        | 8.93         | 162.50            | 164.93            | 167.26         | 168.93             | 173.04              | 174.97               |
| ACTINOID             | S ACTI            | 9<br>NIUM Т    | 90<br>HORIUM I     | 91<br>protactinium | 92<br>uranium  | 93<br>NEPTUNIUM      | 94<br>plutonium    | 95<br>AMERICIUM | м сили                | JM BERF      | J/<br>ELLIUM | 98<br>californium | 99<br>EINSTEINIUM | 100<br>FERMIUM | 101<br>mendelevium | 102<br>NOBELIUM     | 103<br>LAWRENCIUM    |
| ACTINUID             | A                 | c              | Th                 | Pa                 | U              | Np                   | Pu                 | Am              | Cr                    | n I          | 3k           | Cf                | Es                | Fm             | Md                 | No                  | Lr                   |
|                      | [22]              | 7.0] 2         | 32.04              | [231.0]            | 238.03         | $[23\overline{7.0}]$ | [239.1]            | [243.1          | ] [247                | .1] [24      | 47.1]        | [252.1]           | [252.1]           | [257.1]        | [256.1]            | [259.1]             | [260.1]              |

## PERIODIC TABLE OF THE ELEMENTS

22/05(b)